
16 The Delphi Magazine Issue 62

Under Construction:
Local ClientDataSets
by Bob Swart

You might think of MIDAS just as
a multi-tier solution, but there

are parts of MIDAS that can be used
for local solutions too. Specifically,
I’m talking about the ClientDataSet
component here: a DBMS in itself,
which is also contained within the
single MIDAS.DLL. The news about
Kylix and dbExpress emphasises
the future importance of MIDAS
and related technologies for future
releases of Delphi (Windows,
Linux, ...?). So this month I’ll focus
on using local ClientDataSets.

The ClientDataSet component
can be found on the Midas tab of
Delphi 5 Enterprise. Yes, I’m afraid
that even though we’re only using
it for local database access, the
ClientDataSet is only part of Delphi
5 Enterprise. However, some of the
supporting utilities work with
other versions and editions of
Delphi as well, including even
Delphi 1. But before we get onto the
supporting act, let’s first start with
some explaining.

Why Local ClientDataSets?
The benefits of using ClientDataSet
as a local DataSet over the BDE, for
example, are numerous. First of all,
the ClientDataSet is contained
within a single DLL called
MIDAS.DLL. Just drop it into the
Windows\System directory (or
leave it in the same directory as
your executable) and you’re in
business. Compare this to install-
ing the BDE on your client
machine. And even if you decide to
use ADO, which will probably be
on your user’s machine already,
you need to make sure the actual
database backend (Access, SQL
Server, etc) is also present and
accounted for. In short, the
MIDAS.DLL is probably one of the
easiest to install database engines
I’ve seen so far.

The ClientDataSet component,
implemented by this MIDAS.DLL, is

also one of the fastest DataSet
implementations I’ve seen. Sorting,
filtering, all with blazing speed
(we’ll see some examples of this
next month, when we actually start
using local ClientDataSet compo-
nents in applications).

How come it’s so fast? Well,
that’s actually one of the potential
downsides of the ClientDataSet.
You see, everything is managed in
memory. And every operation
(sorting, filtering, searching and so
on) is also done in memory. This
explains the speed, but it also
means that for a really large
ClientDataSet, you also need a
large amount of memory.

Next month, we’ll look at the pos-
sibilities of using standalone
ClientDataSet components (inside
Windows applications, internet
applications or simple console
applications). This time, however,
we’ll focus on loading the
ClientDataSets with data.

Feeding Local ClientDataSets
The easiest way to load a
ClientDataSet at design-time is to
right click on the ClientDataSet
component and select the Assign
Local Data pop-up menu option.
This will show a dialog that lists all
available DataSets (tables, queries,
etc) that are available on the form
or data module itself. If you pick
one, then all data from that DataSet
will be assigned to the ClientData-
Set. You can then remove the
source DataSet from the form or
data module, and be left with a
standalone ClientDataSet only.
Note that you still need to remove
the DBTables unit if you used a BDE
table or query and want to make
your new application BDE-free.

A ClientDataSet can also load
and store its information on disk.
At design-time you can use the Load
From File and Save To File pop-up
menu options to accomplish this.

The ClientDataSet component also
contains methods to do this, as
well as LoadFromStream and SaveTo-
Stream methods, which you can
redirect to different kinds of
streams (like a TMemoryStream, right
before sending this stream over a
socket connection, for example,
but we’ll look at that next time).

ClientDataSet can load and store
two kinds of data formats. The first
one is typically called ‘cds’ format,
and is the internal (and undocu-
mented) binary format. Small,
native and almost impossible to
share (except with other Client-
DataSet components from Delphi 5
and C++Builder 5). The second
data format that ClientDataSets
support is XML. And we’ve all
heard that XML means eXtended
Markup Language, and is often
used in the same sentence with
words like ‘open’, ‘cross-platform’
and ‘portable’. Unfortunately,
once you start working with XML,
you’ll quickly realise that it is just a
language and nothing more (not a
magic potion).

For the remainder of this article,
we’ll focus on the XML data format
used by ClientDataSet and ways to
generate and use it beyond the
ClientDataSet.

DataSet To XML
Once a ClientDataSet is loaded, we
can save the contents to a file. At
design-time, this means a right
click with the mouse on the
ClientDataSet component and,
after you’ve selected the Save To
File pop-up menu choice, you can
specify a filename.

To save some work, we can use
the FileName property: give this
property a value and the Client-
DataSet will load itself (if the file is
available) when activated, and
save itself when deactivated
(when the application closes). The
file will always be in ‘cds’ format,
except when you give it an .XML
file extension. This obviously gives
us an XML file and is the easiest
way to get a first look at the XML
generated by ClientDataSet.

ClientDataSet XML
The ClientDataSet XML format
consists of a header (first line) and

October 2000 The Delphi Magazine 17

a data packet, which in its turn con-
tains two blocks: meta data and
row data. The meta data contains
the field definitions, whilst the row
data contains the individual
records. Note that the row data can
be empty (when you only have an
empty table definition), but the
meta data should not be empty
(unless you have a table with no
fields).

Note that this XML format differs
from the XML format that is gener-
ated by ADO, such as by an
ADODataSet component, for exam-
ple. The latter contains more detail
and uses some different tagnames.
So, unfortunately, a ClientDataSet
cannot load an XML file generated
by an ADODataSet, or vice versa: you
will get an access violation while
loading, although a more descrip-
tive error message might be

helpful). [What’s that about XML
being the new ascii? Hmmm. Ed]
The ClientDataSet XML file is just
one line, by the way, and Listing 1
shows the XML file with some edi-
torial formatting applied, so that
humans can read it and actually
make sense of it!

Why is it important to examine
the ClientDataSet XML format in
more detail? Well, mainly because
we need a way to feed the
ClientDataSet with data. And XML
seems to be the only way to feed it
from an external source. Although
the ClientDataSet itself can gener-
ate XML (once it is loaded by a

local ‘source’ DataSet), we do not
always have a ‘source’ DataSet
available. Besides, there’s a
licence fee rule that specifies that a
MIDAS deployment licence is
required if a MIDAS data packet is
transferred from one machine to
another. And although I’m still
planning to write this article about
local ClientDataSets, it would be
nice to be able to generate XML ‘in-
put’ for ClientDataSets without
needing MIDAS (or a MIDAS
licence) to do so, even when gener-
ating them from another machine.

<?xml version="1.0" standalone="yes"?>
<DATAPACKET Version="2.0">
<METADATA>
<FIELDS>
<FIELD attrname="FieldName" fieldtype="string" WIDTH="100"/>
<FIELD attrname="FieldType" fieldtype="string" WIDTH="24"/>
<FIELD attrname="Size" fieldtype="string" WIDTH="4"/>
</FIELDS>
</METADATA>
<ROWDATA>
</ROWDATA>
</DATAPACKET>

➤ Listing 1: ClientDataSet XML.

unit TableXML;
interface
uses DB;
function DataSetXML(DataSet: TDataSet; const FileName:
String): Integer;

implementation
uses SysUtils, TypInfo;
function DataSetXML(DataSet: TDataSet; const FileName:
String): Integer;

var
F: System.Text;
i: Integer;
function Print(Str: String): String;
{ Convert a fieldname to a printable name }
var i: Integer;
begin
for i:=Length(Str) downto 1 do
if not (UpCase(Str[i]) in ['A'..'Z','1'..'9']) then
Str[i] := '_';

Result := Str
end {Print};
function EnCode(Str: String): String;
{ Convert memo contents to single line XML }
var i: Integer;
begin
for i:=Length(Str) downto 1 do begin
if (Ord(Str[i]) < 32) or (Str[i] = '"') then begin
Insert('&#'+IntToStr(Ord(Str[i]))+';',Str,i+1);
Delete(Str,i,1)

end
end;
Result := Str

end {EnCode};
begin
Result := -1;
ShortDateFormat := 'YYYYMMDD';
System.Assign(F,FileName);
try
System.Rewrite(F);
writeln(F,'<?xml version="1.0" standalone="yes"?>');
writeln(F,'<DATAPACKET Version="2.0">');
with DataSet do begin
writeln(F,'<METADATA>');
writeln(F,'<FIELDS>');
if not Active then
FieldDefs.Update;

for i:=0 to Pred(FieldDefs.Count) do begin
write(F,'<FIELD ');
if Print(FieldDefs[i].Name) <> FieldDefs[i].Name
then { fieldname }
write(F,'fieldname="',FieldDefs[i].Name,'" ');

write(F,'attrname="',Print(FieldDefs[i].Name),
'" fieldtype="');

case FieldDefs[i].DataType of
ftString, ftFixedChar, ftWideString :

write(F,'string');
ftBoolean : write('boolean');
ftSmallint : write(F,'i2');
ftInteger : write(F,'i4');
ftAutoInc : write(F,
'i4" readonly="true" SUBTYPE="Autoinc');

ftWord, ftFloat : write(F,'r8');
ftCurrency : write(F,'r8" SUBTYPE="Money');
ftBCD : write(F,'fixed');
ftDate : write(F,'date');
ftTime : write(F,'time');
ftDateTime : write(F,'datetime');
ftBytes : write(F,'bin.hex');
ftVarBytes, ftBlob : write(F,
'bin.hex" SUBTYPE="Binary');

ftMemo : write(F,'bin.hex" SUBTYPE="Text');
ftGraphic, ftTypedBinary : write(F,
'bin.hex" SUBTYPE="Graphics');

ftFmtMemo : write(F,
'bin.hex" SUBTYPE="Formatted');

ftParadoxOle, ftDBaseOle : write(F,
'bin.hex" SUBTYPE="Ole')

end;
if FieldDefs[i].Required then
write(F,'"required="true');

if FieldDefs[i].Size > 0 then
write(F,'"WIDTH="',FieldDefs[i].Size);

writeln(F,'"/>')
end;
writeln(F,'</FIELDS>');
writeln(F,'</METADATA>');
if not Active then
Open;

writeln(F,'<ROWDATA>');
Result := 0;
while not Eof do begin
Result := Result + 1;
write(F,'<ROW ');
for i:=0 to Pred(Fields.Count) do
if (Fields[i].AsString <> '') and
((Fields[i].DisplayText = Fields[i].AsString) or
(Fields[i].DisplayText = '(MEMO)')) then
write(F,Print(Fields[i].FieldName),'="',
EnCode(Fields[i].AsString),'" ');

writeln(F,'/>');
Next

end;
writeln(F,'</ROWDATA>')

end;
writeln(F,'</DATAPACKET>')

finally
System.Close(F)

end
end;
end.

➤ Listing 2: Unit TableXML with
DataSetXML.

18 The Delphi Magazine Issue 62

Table To XML
This is the point where it gets inter-
esting for Delphi Professional
users too. Apart from using a
ClientDataSet to convert a DataSet
to an XML file, you can just take a
normal DataSet and write some
code to turn it into XML data your-
self. All the information that we
need (field information such as
field name, field type and size) is
stored in a DataSet. And the same
holds for the field name and values
to produce the row data. The fact
that this isn’t that hard to do is
proved by Listing 2: less than 100
lines of code for the TableXML unit
with the DataSetXML function.

When I wrote this DataSetXML
function, I tried to mimic the func-
tionality of the output that the orig-
inal ClientDataSet generates. I did
add some line breaks to make
output more readable, but I tried to
remove some spaces between
fields to make it smaller. I then
used another ClientDataSet com-
ponent to verify that the data rep-
resented by the XML file was
indeed the same. When I used
Internet Explorer to show the XML
inside a browser, however, it
revealed that you can’t remove the
spaces between field-value pairs.
There must be a space after each

ending double-quote and before
the following field name. In HTML
and the official XML definition such
whitespace has no meaning and
can be removed, thereby reducing
the size of the XML file itself. Using
both ClientDataSet and Internet
Explorer as test cases made sure
the XML file was correct both syn-
tactically and semantically
(Internet Explorer will show syntax
errors and ClientDataSet will just
produce an Access Violation when
the XML is broken somehow).

Note that this function can be
extended in several areas. First of
all, I’m not converting all possible
field types, but only the 23 most
commonly used in my personal sit-
uation (I’ve left out some of the
Oracle Blob fields, for example).
Also note that of all the binary
fields (Blob, Memo, Graphic, etc) I
only display the Memo field value
inside the XML file: the others are
just ignored, as ClientDataSet itself
does when generating XML data.
Next time, I’ll be looking at a way to
extend this functionality in the
DataSetXML function, but for now
it’ll do just fine.

With this unit, you can turn any
DataSet (BDE, ODBC, ADO, or even
ClientDataSet or a custom DataSet)
into an XML file dump, which in
turn can be used to ‘feed’ a
ClientDataSet again.

XML To Table
Now that we have a means of con-
verting a DataSet to XML, what
about the other way around? Can
we go from XML to a DataSet again?
Yes, of course we can, because a
ClientDataSet can use the gener-
ated XML to ‘load’ itself with a
DataSet. And this also means that
we can ‘create’ a new table by
defining the fields in XML format.

For example, the BIOLIFE.DB
table can be turned into XML using

the program in Listing 3. This time
we’re not using a ClientDataSet, so
it compiles with Delphi 5 Profes-
sional and Delphi 4, and with a
little work you could make it com-
pile with other versions of Delphi.

The resulting XML file, gener-
ated by our DataSetXML function, is
somewhat more readable than the
single-line XML generated by the
ClientDataSet component. The
interesting part is the <METADATA>
section of the XML file, which con-
tains the field definitions, and is
defined in Listing 4.

Note that when the field name
contains characters that cannot be
part of an identifier (such as
spaces or brackets), then these
characters are replaced by an
underscore, and both the original
fieldname and (fixed) attrname are
present in the field definition.

Internet Explorer version 5 and
higher contain some XML support.
Basically, this means that any XML
structure (like the FIELD inside
FIELDS and ROW inside ROWDATA) is
shown as a tree structure, which
can be seen in Figure 1. Syntax
highlighting also helps to make
this XML file more readable.

The table definition of Listing 4
is actually pretty easy to read, with
the exception of the fieldtype
values, for which I’ve made the
translation table shown in Table 1
between Delphi and XML field
types (note that I’m still using r8
instead of i4 for Word, based on
what the original ClientDataSet
seems to generate, but I may have
to get back on that next month).

Using this translation table and
the knowledge gathered so far, I
decided to make another XML util-
ity. This time a TableXML tool that
collects a set of FieldName,
FieldType and (optionally) Size
information, the basic information
for a field inside a DataSet, and pro-
duces an XML table definition for
it. Such an XML definition would
consist of the FIELDS information
only, and the ROWDATA would be
empty, of course. Having such
empty table definition files can be
very useful, as these correspond to
the empty tables that you some-
times need to ship with your appli-
cations. ClientDataSets can read

program BIOLIFE;
{$APPTYPE CONSOLE}
uses DBTables, TableXML;
var Table: TTable;
begin
Table := TTable.Create(nil);
try
Table.DatabaseName :=
'DBDEMOS';

Table.TableName :=
'BIOLIFE.DB';

DataSetXML(Table,
'C:\BIOLIFE.XML',True);

finally
Table.Free;

end;
end.

➤ Listing 3: Biolife to XML.

<METADATA>
<FIELDS>
<FIELD fieldname="Species No" attrname="Species_No" fieldtype="r8"/>
<FIELD attrname="Category" fieldtype="string" WIDTH="15"/>
<FIELD attrname="Common_Name" fieldtype="string" WIDTH="30"/>
<FIELD fieldname="Species Name" attrname="Species_Name"
fieldtype="string" WIDTH="40"/>

<FIELD fieldname="Length (cm)" attrname="Length__cm_" fieldtype="r8"/>
<FIELD attrname="Length_In" fieldtype="r8"/>
<FIELD attrname="Notes" fieldtype="bin.hex" SUBTYPE="Text" WIDTH="50"/>
<FIELD attrname="Graphic" fieldtype="bin.hex" SUBTYPE="Graphics"/>
</FIELDS>
</METADATA>

➤ Listing 4: Biolife XML metadata.

20 The Delphi Magazine Issue 62

these XML table definitions and
use those to connect to data-aware
controls. Like a DBGrid (see Figure
2) that is connected to a
ClientDataSet named CDS which
just happens to load an XML table
definition like the one we saw in
Listing 1.

The idea of using a
ClientDataSet loaded
with an XML file (gen-
erated by an earlier
version of this
application) is indeed
a nice demonstration
of bootstrapping. The
current edition of this
application shows a
grid where you can
enter values for
FieldNames, select
values from a drop-

down list for FieldTypes and enter a
value for Size (note that at this
time you need to know that Size is
only relevant for String or
Memo/Blob fields).

The code to traverse the
records of the ClientDataSet to
produce an XML table definition
(inside the specified file), can be
seen in Listing 5. Note that this
code is a bit similar to that of List-
ing 2, but different in a number of
places. We cannot inspect the
actual FieldDefs this time, for

➤ Figure 1: Biolife XML in
Internet Explorer.

example, so need to look at the
actual string for the FieldType
(which results in a long if..
then..else sequence). And of
course this time we don’t have to
produce ROWDATA itself, because we
are only producing a table defini-
tion file.

Using the unit from Listing 5, we
can actually go back and produce
the output from Listing 1 again.

Conclusion
So, what have we got at the end of
this article? First of all, a handy
routine to convert a DataSet to an

➤ Figure 2: TableXML
using ClientDataSet.

unit Unit62;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, Db, DBClient, Grids, DBGrids, StdCtrls;

type
TForm1 = class(TForm)
CDS: TClientDataSet;
DataSource1: TDataSource;
DBGrid1: TDBGrid;
ButtonCancel: TButton;
ButtonOK: TButton;
Label1: TLabel;
EditFileName: TEdit;
CDSFieldName: TStringField;
CDSFieldType: TStringField;
CDSSize: TStringField;
procedure ButtonOKClick(Sender: TObject);

end;
var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.ButtonOKClick(Sender: TObject);
var
F: System.Text;
function Print(Str: String): String;
{ Convert a fieldname to a printable name }
var i: Integer;
begin
for i:=Length(Str) downto 1 do
if not (UpCase(Str[i]) in ['A'..'Z','1'..'9']) then
Str[i] := '_';

Result := Str
end {Printable};

begin
System.Assign(F,EditFileName.Text);
try
System.Rewrite(F);
writeln(F,'<?xml version="1.0" standalone="yes"?>');
writeln(F,'<DATAPACKET Version="2.0">');
writeln(F,'<METADATA>');
writeln(F,'<FIELDS>');
CDS.First;
while not CDS.Eof do begin
write(F,' <FIELD ');
if Print(CDSFieldName.AsString) <>
CDSFieldName.AsString then { fieldname }
write(F,'fieldname="'+CDSFieldName.AsString+'" ');

write(F,'attrname="' + Print(CDSFieldName.AsString)+
'" fieldtype="');

if CDSFieldType.AsString = 'AutoInc' then
write(F,'i4" readonly="true" SUBTYPE="Autoinc')

else if CDSFieldType.AsString = 'Integer' then

write(F,'i4') // Integer
else if CDSFieldType.AsString = 'Smallint' then
write(F,'i2') // Smallint

else if (CDSFieldType.AsString = 'String') or
(CDSFieldType.AsString = 'WideString') or
(CDSFieldType.AsString = 'FixedChar') then
write(F,'string') // FixedChar, String, WideString

else if CDSFieldType.AsString = 'Memo' then
write(F,'bin.hex" SUBTYPE="Text') // Memo

else if CDSFieldType.AsString = 'BCD' then
write(F,'fixed') // BCD

else if (CDSFieldType.AsString = 'Blob') or
(CDSFieldType.AsString = 'VarBytes') then
write(F,'bin.hex" SUBTYPE="Binary')

else if CDSFieldType.AsString = 'Boolean' then
write(F,'boolean') // Boolean

else if CDSFieldType.AsString = 'Bytes' then
write(F,'bin.hex') // Bytes

else if CDSFieldType.AsString = 'Currency' then
write(F,'r8" SUBTYPE="Money') // Currency

else if CDSFieldType.AsString = 'Date' then
write(F,'date') // Date

else if CDSFieldType.AsString = 'DateTime' then
write(F,'datetime') // DateTime

else if (CDSFieldType.AsString = 'dBaseOle') or
(CDSFieldType.AsString = 'ParadoxOle') then
write(F,'bin.hex" SUBTYPE="Ole')

else if (CDSFieldType.AsString = 'Float') or
(CDSFieldType.AsString = 'Word') then
write(F,'r8') // Float, Word

else if CDSFieldType.AsString = 'FmtMemo' then
write(F,'bin.hex" SUBTYPE="Formatted') // FmtMemo

else if (CDSFieldType.AsString = 'Graphic') or
(CDSFieldType.AsString = 'TypedBinary') then
write(F,'bin.hex" SUBTYPE="Graphics')

else if CDSFieldType.AsString = 'Time' then
write(F,'time'); // Time

if Length(CDSSize.AsString) > 0 then
write(F,'" WIDTH="',CDSSize.AsString);

writeln(F,'"/>');
CDS.Next

end;
writeln(F,'</FIELDS>');
writeln(F,'</METADATA>');
writeln(F,'<ROWDATA>');
writeln(F,'</ROWDATA>');
writeln(F,'</DATAPACKET>');

finally
System.Close(F)

end;
Close

end;
end.

➤ Listing 5: Producing
XML Table Definitions.

October 2000 The Delphi Magazine 21

➤ Table 1: Delphi field types mapped to XML field types.

XML file (complete with data), and
secondly, a little tool (which is in
need of a good name) to enter
DataSet field type specifications

and produce an XML file for a new
table definition. Both types of XML
file can be used as input for
ClientDataSet components in a

standalone environment, which is
what we will be looking into next
month...

Next Time
We’ll continue with some exam-
ples of local ClientDataSets in real
world applications (using XML
input), which will focus on some of
the major benefits and a few poten-
tial problems of ClientDataSets.
We’ll also experiment with com-
bining ‘foreign’ datasources (no
pun intended) with ClientData-
Sets. And lastly we’ll keep our ears
open for any Kylix news that may
be forthcoming.

Bob Swart (aka Dr.Bob, www.
drbob42.com) is an @-consultant
for TAS Advanced Technologies
and co-founder of the Delphi
OplossingsCentrum (www.tas-at.
com/doc), as well as a freelance
technical author and speaker.

Delphi Field Type XML Field Type

String, WideString, FixedChar string

Boolean boolean

Smallint i2

Integer i4

AutoInc i4, readonly=true subtype=Autoinc

Word, Float r8

Currency r8, subtype=Money

BCD fixed

Date date

Time time

DateTime datetime

Bytes bin.hex

VarBytes, Blob bin.hex subtype=Binary

Memo bin.hex subtype=Text

Graphic, TypedBinary bin.hex subtype=Graphics

FmtMemo bin.hex subtype=Formatted

ParadoxOle, dBaseOle bin.hex subtype=Ole

	Why Local ClientDataSets?
	Feeding DataSet To XML
	DataSet To XML
	ClientDataSet XML
	Table To XML
	XML To Table
	Conclusion
	Next Time

